
Robust  Parallel  Adaptive  Mesh  Refinement  Software 
Library  for  Unstructured  Meshes 

John Z. Lou, Charlcs D. Norton, and Tom Cwik 
Jet Propulsion Laboratory 

C a l i ~ ( ~ r n i ~  Institute o f  Technology, Pasadcna, CA 9 1009-8099 

Keywords: parallel adaptive mesh refinement, unstructured mesh 



tion ~ ~ j . c ~ c ~ ~ c ~ 1 ~  re~ jnc~en l  patterns bascd  on the clcmcnt shape. and  other approaches 141. We will present a 
robusl approach lo actdressing the issue of mesh quality control during successive mesh refinement. ~ i i s ~ u s ~  
our implementation scheme for this technique and show some test results. 

Our adaptive mesh refinement algorithm consists of two steps:  a logical/conceptual step in which 
the ini~~rmati~)n needed to refine each element in  the coarse mesh is constructed and stored, and a physical 
relincmcnt step in which the coarse mesh is actually refinement to produce a new mesh. The separation oi 
an adaptive refinement process into a logical relinement phase and a physical refinement phase offers scv- 
era1 advantages i n  a parallel AMR impIementalion. I t  makes thc AMR code highly modular. a n d  makes the 
actual mesh relinen~ent local to each elemenl. It also makes it possible t o  perform parallel load-balancing 
by m i ~ r a ~ i n g  only the coarse mesh instead of {he re~ined mesh. thus with a much reduced communication 
cost. Such a refinement strategy also makes it possible to confine the interprocessor communication t o  the 
logical refinement phase. The code for this phase is small compared to  the actual relinement phase which is 
basically an operation local to each  processor in the parallel AMR process. 

3 



I lnitial mesh partitioning I 

> tolerance? 
Mesh  smoothin 

I Adaptive  refinement  Adaptive  refinement 
(logical  phase)  (physical phase) I 

I 

Mesh repartition 
and migration 

Figure 1. Parallel AMR process for unstructured meshes 

2 

4 5 

3 

4 5 

Figure 2. An example of mesh quality control. The original refinement (left) on the coarse elc- 
men1 2-3-4  is modified (right) if any of the two elements in 2-3-4 need t o  be further relined 
either due to local errors or because their n e i ~ h b ~ ~ r i n ~  elements in 1-2-3 are to  be further relined. 

elements in the mesh are not uniformly refined (in order  to preserve the consistency ofthe global mesh) the 
aspect-ratio of parlially relined elements could degrade rapidly as adaptive relinement  procccds, especially 
for the three-dimensional tetrahedral meshes. Mesh smoothing  algorithms have been proposed 13,7 1 io 

improve elements  shape  either locally or globally. Most mesh  smoothing schc~nes lend to change thc slruc- 
turc of the input mesh to achieve the “smoothing effect” by rearranging nodes in the mesh. The changes 
made by a smo~~thing scheme, however. could modify the desired distribution of element density procluceci 
by the AMR procedure. With a maximally refined mesh, applying a  smoothing operation over the entire 
mesh is probably the only  choice t o  improve the mesh quality. On the  other  hand, it is possible t o  prevent 
the mesh quality from further degradation during repeated adaptive rclincment. The idea is to  change the 
original refinement on a partially refined element if any of the children of that element need to he further 
retined i n  the next refinement. Figure 2 illustrates an example ofthe situation. 

To simplity the implementation of such a feature in a parallel adaptive refinement procedure, wc 
require that the mesh partitioner does not separate the twin elements  (2-3-4)  onto two processors, allowing 
the subsequent refinement operation l o  remain local in each processor. By incorporating this quality control 



capability i n t o  the AMR procedure, the final mcsh succcssive AMR stages will have an acceptable ~ ~ ~ ~ ~ 1 1 ~ ~  
level if the initial input mesh  does. 

3.1 Fundamental Data Structures 
Automated mesh generation systems typically describe a mesh by node coordinates and connectivity. This 
is insufficient  for adaptive mesh refinement. Hierarchical intbrmation,  such as the faces forming an e k -  
ment, the edges bounding each lice,  or elements incident on a  common node is also useful. Additionally, 
large problems require the  data to be organized and accessible across  a ~ ~ i s ~ i b u l e ~ i  lnemory parallel com- 
put in^ system. These  issues can be addressed by the creation of appropriate PAMR data structures. 



PROGRAM pamr 
use  mpi-module ; u s e  mesh-module ; use  misc-moclule 
i m p l i c i t  none 
i n t e g e r  : :  i e r r o r  
cha rac t e r  ( len=R) : : input-mesh,-file 
type  (mesh) : :  in-mesh 
c a l l  MPI-INIT( i e r r o r  ) 

input-mesh-file = mesh-namei i a m  1 
cal l   mesh-create- incore ( in-mesh,  input-mesh-file 1 
c a l l   mesh- repa r t i t i on  ( in-mesh 1 
c a l l  mesh-v isua l ize(   in -mesh ,   "v is f i le .p l t "  ) 
c a l l  MPI-FINALIZE ( i e r r o r  1 

END PROGRAM pamr 

Figure 3. A main program with selected PAMR library calls. 

The major data struclure is the description of  the mesh. While a variety of organizations are possi- 
hle. where trade-offs between storage and etficiency of component access must he decided, most descrip- 
lions include elements. faces, edges, and nodes. These are related hierarchically where components 
generally contain references  to other components that comprise its description. These references can he bi- 
directional, an edge may have references t o  its two node end points and references L o  the faces it helps 
form. However, some of these  details can he omitted from the structure by using a ~ ~ ~ ~ n b i n ~ ~ t i ~ ~ n  of good 
data  structure  designs and efficient recomputation of the required information. 

h 



module mesh-module 
use  mpi-module ; u se  heapsort--module 
i m p l i c i t  none 
p r i v a t e  
public : : mesh-create,  mesh-create-.incore, mesh-separtit.ion, & 

i n t ege r ,   pa rame te r  : : mesh-dim=2, nodes-=3, edges-=3, neigh-=3 
type  element 

p r i v a t e  
integer : : i d ,  nodeix(nodes-) I edgeixiedges-) , ne ighix  (neigh-) 

end type element. 
type mesh 

p r i v a t e  
type  (node) , dimension ( : ) , p o i n t e r  : : nodes 
type iedge)  , dimension( : 1 , point,er : : edges 
type( element)  , dimension( : ) , p o i n t e r  : : elements 
type( r - indx)  , dimension( : ) , p o i n t e r  : : boundary-elements 

mesh-visualize,  edge-migration,  node-migration 

end type mesh 
conta ins  

subroutine  mesh-create-incore (t,his, mesh-file) 
type  (mesh) , i n t e n t  ( i n o u t )  : : t h i s  
character ( l e n = * )  , i n t e n t  ( in) : : mesh-file 

end  subroutine  mesh-creat-e-incore 
! d e t a i l s   o m i t t e d  . . .  

end module mesh-module 

Figure 4. Skeleton view of mesh-module components. 

tains statemcnl,  such  as mesh-crcatc-incore(~. belong to the module. This means that routine interfaces, 
that perform type matching on arguments for corrcctness, are created ~ut(~rna~ic~1ly.  (This is similar l o  
function prototypes in other languages.) 



aries.) One of the benefits of’this scheme is that any processor can refer t o  a speciI‘Ic parr of the data slruc- 
ture t o  access its complete lisl of non-local elements. 

Figure 4 showed the major components of the mesh data  structure, in two-dimensions. While For- 
tran 90 fully supports linked list structures using pointers, a c ~ ~ m m ~ ~ n  organization for PAMR codes,  our 
system uses pointers t o  dynamically allocated arrays instead. There arc a numher of reasons why this orga- 
nization is used. By using heap sorting methods during data structure construction, the array references for 
mesh components can be constructed very quickly. Pointers  consume memory, and the  memory references 
can become “un(~rg~n ize~~” .  leading lo poor cache uti1i~ati~)n. While  a pointer-based organization can be 
useful, we  have ensured that our mesh reconstruction methods are I‘ast enough so that the additional com- 
plexity of a pointer-based scheme can be avoided. 

Interfacing among data structure  components 

The system is designed to make interl’acing among  components very easy. LJsually, the only argument 
required to a PAMR public system call is the mesh itself, as indicated in Figure 3. There are other interlaces 
that exist however, such as the internal interfaces o1Fortran 00 objects with MPI and the ParMeTiS parallel 
partitioner I X I which written in the C programming language. 

Since Fortran 90 is backward compatible with Fortran 77 i t  is possible to link to MPl for interlan- 
guage  communication. ~~ssuming that the interface c ~ e c l ~ ~ ~ t i ( ~ n s  have been defined in the mpi.h header file 
properly. While certain army constructs have been useful, such as array syntax and suhsections, MPI does 
not support Fortran 00 directly so array subsections cannot be (safely) used as parameters t o  the library rou- 
tines. Our system uses the ParMeTiS graph partitioner to reparlition the mesh for load balancing. In  order 
t o  communicate with ParMcTiS our  system internally converts the distributed mesh into  a distributed 
graph. A single routine interPacc to C is created that passes the graph description from Forlran 90 by refer- 
ence.  Once the partitioning is complete, this same interl‘ace returns from C an array lhat  describes the new 
partiti~~ning to Fortran 90. This is then used in the par~lllel mesh migration stage to halance mesh compo- 
nents among the processors. 

subrout ine  mesh-repart- i t ion i t h i s  1 
type (mesh) , i n t e n t  ( i nou t )  : : t h i s  

! stat.ements omi t ted  . . .  
c a l l  PARMETIS(mesh-adj, mesh-repart,  nelem, nproc,  iam) ! c c a l l  
c a l l  mesh-buildithis, new-mesh-repart=mesh-repart) 

end subrout ine  mesh-repart i t - ion 

Figure 5. Fortran 0OK interface to mesh repartitioncr and mesh migration routines 

3.2 Parallel Mesh Migration and Load Balancing 

Once the mesh is relined load imhaiance is introduced, clue t o  the creation of new elements in regions with 
high error estimates. As a result, the elements must  be repartitioned and migrated lo the proper processors 
to establish a balanced load. The ParMcTiS graph p~~ti t ioncr  is used to compute the new partitioning. Ele- 
ments are weighted based on  the refinement level, the dual-~raph of thc mesh is created, and the ParMeTiS 
p ~ ~ t i t i ~ ) n e r  computes  a new parti~i~~ning based o n  the weighted graph. The weighted graph attempts to linci 
a part~ti(~ning that minimizes the movcIxlent of elements and the number of components o n  partition bound- 
aries (to minimize communication).  Our  system, in order to minimize communication even further, actually 
gives ParuMeTiS a mesh that only indicates relinement, where the new elements have not  yet  been created. 
Once this (coarse) mesh is migrated then the actual relinement is performed after element migrati~~n. 

x 



n ~ ~ r ~ ~ ~ i n g  among C and Fortran YO for mesh migration 

~ ~ ~ r ~ e T i ~  only returns i n f ~ ~ r m a t i ~ ~ n  on the mapping of elements to (new) processors, it does not  actually 
j ~ ~ i ~ ~ a t e  elements across a parallel system. Our parallcl mesh migration scheme reuses the eflicicnt 
I~esh--build(~ routine t o  construct the new mesh from the ParMeTiS repartitioning During this mesh-build 
process the clement information is migrated according t o  lhis partitioning. 

As seen in Figure S ,  information required by the ParMeTiS p ~ t i t j ( ~ n e r  is provided by calling a Fortran 90 
routine that converts the mesh adjacency structure into ParMcTiS format (hitldcn). When this call returns 
from C, the private mcsh-build() routine constructs  the new distributed mesh from the old mesh and the 
new repartili~~ning by performing mesh migration. Fortran 90 allows optional arguments t o  be selected by 
keyword. This allows  the mesh-build routine t o  serve multiple purposes since  a keyword can he checked l o  
determine if migration should be perf~~rmed as par1 of the mesh construction process: 

subrout ine  mesh-bui ld   ( this ,   mesh-f i le ,  new-mesh-repart I in-core) 
in teger ,   d imens ion  ( : ) , i n t e n t   ( i n )  , op t iona l  : : new-mesh-repart 
l o g i c a l ,  i n t e n t ( i n )  , o p t i o n a l  : :  in-core 
! s ta tements   omi t ted  . . .  

i f   ( p r e s e n t  (new-mesh-repart) ) t hen  

end i f  
! ( r e ) c o n s t r u c t   t h e  mesh independent of i npu t   fo rma t . .  . 

! perform mesh m i g r a t i o n . .  . 

end  subroutine  mesh-build 

This is another way in which the new features o f  Fortran 90 add robustness t o  the code  design. The way in 
which the new mesh data is presented, either from a tile formal or from a repartitioning, does no1 matter. 
Once the data in organized in our private internal format the mesh can be reconstructed by code reuse. 

Mesh migration communication  algorithm 

The mesh is migrated in slages, based on  the component type, for safety. In two-dimensions, mesh  edges, 
nodes, and node coordinates  are transported t o  new processors (if necessary) in  that order. Since the mesh is 
reconstructed by the mesh-huild() routine. information regarding the boundaries and component ownership 
does not  need t o  be included in the migration stage. 

The parallel c~?mmunicati(~n algorithm for migrati~)n of mesh data is straighlforward. Processors 
lirst organize data that  will remain local. Then. data that must be migrated is sent continually to processors 
that expect the data. While thc sending is performed. processors probe lhr incoming messages, that are 
expected, and receive them immediately upon arrival (the probe is non-blocking). Probing has the actdcci 
benetil that a processor can allncate storage for an incoming message before the message is ~ ~ ~ t u ~ i l l y  
received. When this process is completed, processors check to see if there arc any remaining receives, pro- 
cesses them if necessary, and the migration completcs. At lhis point, the mesh is reconstructed with the new 
data. 

The ParMeTiS library determines where elements must be migrated, using a multi-level diffusion 
algorithm. In  Figure 6 we see a mesh with a  rand^^^ ~~~s t r ibu t i~ )n  of elements and the repartitioning after 
mesh migration using ParMeTiS. 

3.3 Performance 
The performance of the c~~mmunicat i~~n intensive parts 01 the system,  such as mesh re~lnement, mesh 
migration, mesh loading, and mesh construction arc of intercst. The quality o f  the  pxtitioning protluceci by 

Y 



Figure 6. 1 I l u s ~ ~ ~ t i ~ ) n  olParMeTiS  repa~iti~)ning on Cray T3E using 8 processors. 

the ParMeTiS mesh parlitioner, as well as its performance are also important. These  leatures will be charac- 
terized and included in the final version ol this abstract. 

The clement quality  due to successive adaptive refinement could degrade rapidly to malic the 
resulling mesh practically useless lor many numerically applic~lti~~ns. We therelore have incorporated a 
technique that improves the adaptive re~inement process. Figure 7 shows  a  test  case illustrating how  narrow 
 reen en- reline^^" elements have been replaced by elements with better aspect ratios. (The improved AMR 
code will be applied to the waveguide lilter and other examples shown here in our linal paper). 

Figure 7. Illustrali(~n o f  mesh quality control during repeated adaptive refinement. 

4. Applications 
We now present some  results lrom applications of  our parallel AMR tool  to a lew test problems on triangu- 
lar and tetrahedral meshes. Figure 6 shows a parallel p a ~ i t i ~ ~ n i n g  and migration 0 1  a triangular linite-cle- 
ment mesh in a waveguide filter domain. The input mesh is read in from a disk file, and initially distributed 
in a random I'ashion  on eight Cray T3E processors. The mesh is concurrently partitioned using the ParMc- 
TiS routine. The parallel mesh migration module is then used to move subpartitions  to their destination pro- 
cessors. 

Our AMR module is tested in a linile-element simulation of electromagnetic wave scattering i n  
the above w ~ { ~ ~ e ~ u i ~ ~ e  filter IS) .  The problem is lo solve Maxwell's equation lor the electromagnetic (EM) 
lieids in the lilter domain. A local-error cstimalc procedure based on the Element Residue Method (ERM) 
I 1 I is used in  combination with the AMR technique to aclaptively construct an optimal mesh for the proh- 
lem solution,  Figure 8 shows a few sn~~ps l l~~ts  of the mesh in the AMR solution process. The color and den- 
sity ~ l s t r i b u ~ i ~ ~ n  of mesh elements in the figure reflect the (estimated)  error distribution in the computed 
lields. Another application of the AMR module is t o  an EM simulati~~n in a quantum well infrared photode- 
tector (QWIP), as shown in Figure 9. 

Figure I O  shows a test of our AMR module on a tetrahedral mesh. The initial ~ e ~ r ~ ~ h e ~ l r a i  mesh 



Figure X .  Adaptive finite-element s(~1uti~~n in a waveguide filter. Adaptive refine- 
ment is guided by a local-error  estimate procedure based on local residuals. 

was generated in a U-shaped domain with I20 elements. Mesh elements in two spherical suhregions, indi- 
cated by the circles in the  top initial mesh, arc chosen for adaptive relinement. The radius of  the refining 
spheres is reduced by 20%; after each adaptive relinemcnt. The  color image at the hottom of Figure 1 0  is the 
resulting mesh after three successive adaptive ref~ncmcnts, which has ahout 250() elernents. 

Figure 9. Adaptive finite-elemcnt simulation in a  quantum well inirared photodetector lor 
long-wavelength infrarccf radiation. The adaplively relined mesh. computed magnetic field 
relative to an incident plane wave, and the wave lield on the mesh are shown respectively. 

5. Conclusion 
We have presented a  complete iramework lor performing parallel adaptive mesh rclinemcnt in unstructured 
applications o n  m u l t i p r ~ ~ c ~ s s ~ ~ r  computers.  A rohust parallel AMR scheme and its implementation with 
mesh quality control, as well as  a load-balancing stralcgy in parallel AMR, are discussed. Our itnplementa- 
tion of the parallel AMR software package in Fortran 90 and MPI,  including the data structure and intcr- 
faces between ciifferent modules. are also discussed.  A few application examples using our developed AMR 
modules are demonstrated. Parallel performance on several multiprocessor systems will he given in our 

1 1  



linrtl paper. 

Figure 10. Adaptive refinement on a three-dimensional tetrahedral mesh. The ini- 
tial mesh (top) has 128 elements, and two subregions arc chosen arbitrarily to be 
refined. The mesh after adaptive refinements (bottom)  has about 2,500 elcments. 



. . .  

6.  References 
[ I ]  M. Ainsworth, J. T. Oden.  A  Procedure  for a Posteriori error Estimation for 17-17 Finite Element 

Methods.” Computer  Methods in Applied  Mechanics and Engineering, 101  (1972) 73-96. 

[21 R. Biswas, L. Oliker, and  A. Sohn.  “Global  Load-Balancing with Parallel Mesh  Adaption  on Dis- 
tributed-Memory Systems.’’ Proceedings of S ~ ~ p e r ~ ~ ~ m p u ~ i n g  ‘96, Pittsburgh. PA.  Nov. 1996. 

131 E.  Boendcr. “Reliable Delaunay-Base~i  Mesh  Generation  and Mesh Improvement.”  Communica- 
tions in Numerical  Methods in Engineering, Vol. I O ,  773-783 (1994). 

141 Graham F. Carey, “‘Computational  Grid Generation, Adaptation, and Solution Strategies”. Series in 
~ ~ j m p u t a t i ~ ~ n a l  and  PHysical Processes in ~ e c h ~ ~ n i c s  and Thermal  Science. Tdylor & Francis. 1097. 

151 T. Cwik, J. 2. Lou, and  D. S. Katz, “Scalable Finite Element  Analysis of Electromagnetic Scattering 
and Radiation.” to  appear in Advances in Engineering Software, V. 29 (2), March, 1908 

161 V. Dccyk. C. Norton, and B. Sxymanski.  Expressing  Object-Oriented  Concepts in Fortran 90. ACM 
Fortran Forum, vol. 16, num. 1 ,  April  1997. 

j 71 L. Freitag, M. Jones, and P. Plassmann. “An Eflicicnt Parallel Algorithm for Mesh  Smoothing.” 
Tech. Report, Argonne National Laboratory. 

181 G. Karypis, K. Schloegel, and V. Kumar. “ParMeTiS: Parallel Graph Partitioning and Sparse  Matrix 
Ordering Library Version 1 A)”. Tech. Rep., Dept. of Computer  Science, U. Minnesota, 1997. 

191 C. Norton. V. Decyk, and B. Szymanski.  High  Pcrformance Object-Oriented Scientific Program- 
ming  in  Fortran 90. Roc. Eighth  SlAM  Conf.  on Parallel Processing for Sci. Comp.. Mar. 1907 
(CDROM). 

I IO]  M. Shephard, J.  Flaherty, C. Boltasso. H. de Gougny, C. Ozturan, and  M. Simone. Parallel aulo- 
matic adaptive analysis. Parallel Computing 23 ( 1997) pg. 1327- 1347. 


